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ABSTRACT 
This paper studies the discrimination of electroencephalographic 

(EEG) signals based in their capacity to identify silent attentive 

visual reading activities versus non reading states. 

The use of physiological signals is growing in the design of 

interactive systems due to their relevance in the improvement of 

the coupling between user states and application behavior.  

Reading is pervasive in visual user interfaces. In previous work, 

we integrated EEG signals in prototypical applications, designed 

to analyze reading tasks. This work searches for signals that are 

most relevant for reading detection procedures. More specifically, 

this study determines which features, input signals, and frequency 

bands are more significant for discrimination between reading and 

non-reading classes. This optimization is critical for an efficient 

and real time implementation of EEG processing software 

components, a basic requirement for the future applications. 

We use probabilistic similarity metrics, independent of the 

classification algorithm. All analyses are performed after 

determining the power spectrum density of delta, theta, alpha, beta 

and gamma rhythms. The results about the relevance of the input 

signals are validated with functional neurosciences knowledge.  

The experiences have been performed in a conventional HCI lab, 

with non clinical EEG equipment and setup. This is an explicit 

and voluntary condition. We anticipate that future mobile and 

wireless EEG capture devices will allow this work to be 

generalized to common applications.  

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces – user centered design, evaluation, interaction styles. 

General Terms 

Design, Experimentation, Human Factors, Measurement  

Keywords 

Reading Detection, HCI, EEG Processing and Classification, 

Similarity Metrics, Feature Relevance Measurement. 

1. INTRODUCTION 
The understanding and use of human physical and physiological 

states in computational systems increases the coupling between 

the user and the application behavior. The integration of 

physiological signals in applications is relevant in the design of 

universally-accessible interactive systems and will become more 

relevant as new computing paradigms such as ubiquitous 

computing [7] and ambient intelligence [1],[14] develop. 

The use of neurophysiological signals, and in particular 

electroencephalograms (EEG), has been widely reported in the 

context of an important example of coupled interaction systems: 

BCI’s [4],[5],[16]. These interfaces exploring the information at 

its source, the brain. EEG signals are frequently chosen because of 

their small temporal resolution and non-invasiveness [9] and also 

due to its relative low cost capture device settings. 

Visual user interfaces often require reading skills. The users’ 

reading flow is highly influenced by their concentration and 

attention while interacting with applications. The application 

visual characteristics and users’ cognitive state can decrease 

readability and degrade the interaction. 

Augmented reading applications should adapt to the user’s 

reading flow through the detection of reading and non-reading 

states. Reading flow analysis also improves the understanding of 

the users’ cognitive state while interacting with the applications 

and improves the current empirical style of usability testing [9]. In 

previous work, we integrated EEG signals in two prototypical 

applications, designed to analyze and assist reading tasks. These 

applications are briefly described further down in this paper. 

This paper focuses on the discrimination of EEG signals based in 

their relevance with respect to the identification of silent attentive 

reading versus non reading tasks, therefore finding the 

importance of each EEG signal for the reading detection 

procedure. The ultimate goal of this study is to allow a robust 

selection and weighting of input signals, which we deem critical 

for a feasible, efficient, and real time implementation of EEG 

processing software components, our augmentation approach. 

EEG processing literature generally refers feature vectors of some 

extent. We have dealt with data dimensionality reduction in the 

processing pipeline by using Principal Component Analysis [9]. 

PCA does not consider the spatial distribution of the input signals 

nor the functional neurosciences knowledge. Neurosciences map 

cognitive processes into skull areas.. Quantifying the importance 

of each input signal in relation to reading detection will help 

verifying what electrodes and frequency bands are more involved 

in the reading cognitive process, and builds on the functional 

neurosciences knowledge. 
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The analysis of EEG signals relevance is performed after 

determining the power spectrum density (PSD) of delta, theta, 

alpha, beta, and gamma rhythms (the known EEG frequencies 

bands) in each of the captured EEG streams. We then apply 

probabilistic similarity measures [10], which are independent of 

the classification algorithm, in each of these streams to detect the 

main differences, and to discriminate between visual reading and 

non reading activities. All results obtained about the importance 

of the input signals are provided and crossed against functional 

neurosciences knowledge. 

Our experiments were performed in a conventional HCI lab, with 

non clinical EEG capture equipment. This is not a  limitation to 

overcome but rather a feature and an apriori requirement of our 

design. Even if the results can be further validated in clinical 

settings (in vitro), our goal is to address real life situations (in 

vivo) which have harsher stability, noise and artifact conditions. 

We predict future mobile and wireless EEG capture devices will 

allow the generalization and extension of this work to common 

tools and applications. The broader goal of this work is to design 

and develop usable and robust software components for 

integration in interactive systems that reach higher adaptation 

levels through this augmentation approach. 

 

2. EXPERIMENTAL SETTINGS 
EEG signals were captured using MindSet-1000, a simple digital 

system for EEG mapping with 16 channels, connected to a PC 

using a SCSI-interface. These channels are connected through 

pure tin electrodes (sensors) to a cap made of elastic fabric, 

produced by Electro-Cap International.  

 
Figure 1. MindSet-1000 and Electro-Cap Intl Cap. 

 

Figure 2 shows the electrodes mapping that are used in our study. 

The EEG signals are amplified in differential manner relative to 

the ear electrodes and are sampled with 256Hz frequency. All 

requirements indicated by suppliers and technicians were fulfilled 

[9]. These included “grounding” the subjects and keeping the 

impedance in each electrode bellow 6000Ω, through the thorough 

application of conductive gel. 

 

Figure 2. Mapping of used EEG electrodes (Int 10-20 method). 

The first 5000ms and the last 3000ms of each trial are discarded 

for avoiding possible artifacts caused by start-end of the recording 

process. To assure the reliability of capture procedure the 

experiment was also tested using a professional medical capture 

device, in use in a Hospital, which setup was entirely prepared 

and tuned by expert technicians [9]. The results obtained with 

both capture devices were validated by an EEG specialist and a 

consistent set of sample results was produced. 

2.1 Read and Not Read Experience 
The capture experiments, object of the relevance analysis 

described in this paper, were based in the presentation of alternate 

blank and text screens containing about 40 lines of daily news 

text. The duration of such screens differed according with the 

ability to keep subjects concentrated in the task [9]. Text screens 

were presented in longer periods (30s) than black screens (20s). 

These types of periods were interlaced: one reading text sample, 

followed by 2 watch-only blank screens, and again back to read. 

All these periods were captured separately, allowing a small 

resting period, where the signal was not recorded.  

Each capture trial included approximately 120s of both sample 

classes. All data was recorded without any previous or special 

training in a right handed female subject, mid thirties and without 

known vision disabilities (see discussion on this choice in the final 

section). 

2.2 Assisted Reading Prototypes  
In the context of these experiences, we designed simple prototype 

tools. ReadingTester tests in real time “reading event scripts”, 

sequences of events with certain duration that are generated by the 

application. The subject is exposed to these events, and 

simultaneously the EEG is captured and analyzed. A detection 

performance report is built when the detection process stops. 

 

 

 

 

Figure 3. Assisted Reading Prototypes. 

 

ReadingScroller aims at controlling the text scrolling through 

EEG signals: while the user is reading the scrolling should occur; 

if the user stops reading the scrolling should also stop. This is a 

trivial (from the functionality’s viewpoint) Brain Computer 

Interface exploiting the reading detection capability, but with non 

trivial design challenges not reported here. 



3. RELEVANCE ANALYSIS  
Relevance analysis is performed after determining the PSD of 

delta (δ), theta (θ), alpha (α), beta1 (β1), and gamma (γ) rhythms 

in each of the 16 electrodes’ input streams. This results in 16x5 

PSD features streams, each with reading and non-reading 

samples. We then determined probabilistic dissimilarity measures 

separately in each of these streams, in order to quantify the 

dissimilarity between these two sample classes. The most relevant 

streams are those revealing larger significant differences between 

the reading and non-reading classes.  

3.1 Probabilistic Dissimilarity Measures 
Relative similarity is the relationship between two entities that 

share common characteristics with different degrees [10]. The 

larger it is, the greater the resemblance between the compared 

objects. Relative dissimilarity, on the other hand, focuses on the 

differences: the smaller it is, the greater the resemblance between 

the compared objects [10]. In our work, we compare the 

dissimilarity between reading and non reading samples sets. Both 

sets were approximated through Normal probability functions, 

since their samples result from discrete observations belonging to 

a large vector space.  

Table 1 summarizes the probabilistic dissimilarity measures that 

were tested [2]. µi and Σi are respectively the mean vector and 

covariance matrix of the Normal distribution, noted as Ni, which 

approximates class i samples set. DM is the squared Mahalanobis1 

distance between their means. In all the presented formulas, we 

assume Σ1 ≠ Σ2. 

For the sake of reproducibility of this work, the remainder of this 

section briefly describes each one of these measures. 

3.1.1 Kullback-Leibler (KL) Divergence Based 

Measures 
Kullback-Leibler Divergence is an asymmetric measure, a.k.a 

Relative Entropy or Information Gain. It quantifies, in bits, how 

close a distribution F1 is from a (model) distribution F2 [12], or, 

more precisely, the loss of information we incur in if we take F1 

instead of F2 [8]. By definition, this measure between probability 

distributions p1(x) and p2(x) is determined by [10], [15],[8]:  

 

For two Normal distributions N1 (x) and N2(x) it becomes in the 

formula displayed in Table 1.  

KL divergence cannot be considered a metric because it is 

asymmetric, that is:   [12][8]. There are 

however measures such as J-Coefficient and Information Radius, 

which are symmetric versions of KL divergence. 

J-Coefficient (JC) [2] is calculated by applying the KL formula 

symmetrically: 

 

Information Radius (IR), also known as Jensen–Shannon 

divergence, is a smoothed symmetric version that is the average of 

the KL-distances to the average distribution [15]: 

 

                                                                 

1   

Kullback-

Leibler  

 

J-Coefficient 

 

Information 

Radius  

χ2  Divergence 

 

Hellinger 

Coefficient 

 

Chernoff 

Coefficient 

 

Bhatthacharyy

a Coefficient 

 

Distance 

 

Table 1. Probabilistic dissimilarity measures. 

 

3.1.2 χ
2  

Divergence 
χ2 divergence is an asymmetric measure between probability 

distributions p1(x) and p2(x), and is determined by  [8]: 

 

The convergence in χ2 divergence implies convergence in KL-

divergence, but the converse is not true [8]. This is because χ2 

divergence is strictly topologically stronger then KL-divergence, 

since KL(P,Q)≤ χ2(P,Q). 

 

3.1.3 Hellinger Coefficient (HC) Based Measures 
Hellinger Coefficient (HC) of order t is a similarity measure 

between probability distributions p1(x) and p2(x), defined in [8]: 

 



From this similarity-like measure, several dissimilarity 

coefficients have been derived. Chernoff coeficient (CC) of the 

order t is defined as [5]: 

 

This measure is related to KL divergence through its slope at t=0, 

it is smaller than KL divergence and it is less sensitive than the 

KL-divergence to outlier values [8]. 

There is also a special case symmetric metric for t=1/2, named 

Bhattacharyya Coefficient (BC), defined by [10]: 

 

BC measures the amount of overlap between two probability 

distributions. 

3.1.4 Minkowski’s Based Measures 
The Minkowski’s Lp distance with p ={1,2,3, …} defined in 

[2][5]: 

 

All Minkowski measures are symmetric and differ only in the way 

they amplify the effect of outlier values. Minkowski’s distances of 

first and second order, L1 and L2 distances, are also known as 

Manhattan and Euclidean distance respectively.  

 

L2 measure is defined by [10]: 

 

It defines the distance between two points in a Euclidean n-space– 

a real coordinate space with n real coordinates, in this case our 

samples.  

 

3.2 Relevance Measurement Method 
We assume that relevance is directly proportional to the 

differences determined by dissimilarity measures. So our 

procedure is based in the ordering of the 16x5 feature streams 

accordingly with the calculated dissimilarities. 

The first step is applying all the dissimilarity measures to the 

feature streams. This results in 16x5 (80) real values, one for each 

stream, corresponding to the measured difference. In order to 

compare all these values, all streams are normalized and turned 

into percentages by applying the following formulas: 

 

 

The first equation normalizes the range of each difference to the 

interval [0,1]. The second weights it in relation to the overall 

results obtained with the measure. 

At this stage, after observing all the produced graphics, the 

Minkowski’s Based Measures were discarded. These measures 

showed results that were too divergent from the ones provided by 

the rest of the metrics.  

The final 16x5 weights, which we are using to quantify the 

importance of each 16X5 stream, are the average of all the 

measures. These weights are then ranked from the minimum (1) to 

maximum (80) importance and these are the results to analyze in 

order to determine signal relevance. 

3.3 ANOVA Analysis 
To statistically validate our conclusions we performed Variance 

Analysis, also known as ANOVA. It analyses the variation 

present in our experiments by statistically testing whether the 

statistical parameters of our groups of measures (bands, 

electrodes, etc.) are consistent, assuming that the sampled 

populations are normally distributed. If, for instance, this 

consistency holds for two electrodes or bands, then we can safely 

consider them correctly ranked. 

ANOVA results are put into a graphic or table (Figure 4). The 

center line in the graphic represents the mean of each group, the 

above and below polygon lines, show it’s the mean +/- variance 

values and the line segments delimit the confidence interval.  

 

 
SS DF MS F P Crit.F 

Between Groups 167,1 1 167,1 107,3 6,02E-08 4,6 

Within Groups 21,8 14 1,6 
   

Total 188,8 15 
    

       Figure 4. ANOVA for left (1) vs. right (2) Hemispheres. 

 

The main ANOVA formula is given by: 

 

where the numerator is the variance between groups, and the 

denominator is the variance within groups: 

 

 

 

The numerator of these formulas is represented in Squared Sum 

(SS) column (in the Table of the above Figure 4), while the 

Degrees of Freedom (DF) column contains the denominator. Total 

row is the sum of the columns. Mean Squares (MS) column is 

SS/DF. Critical F is got from the F distribution table and P is the 

probability of Critical F being as great as F. In the case of the 

above values, F is much greater that critical F and P is a 

significantly low value, so we can state that the statistical 

parameters of our groups of measures are consistent 



4. PROCESSING AND ANALYSIS 

FRAMEWORK  
All the processing functionalities are encapsulated in EEGLib 

framework, an object oriented toolkit implemented in C++ and 

MatLab [9],[3]. This framework provides tools for feature 

extraction and classification and also components for data 

modeling, such as EEG streams, frames, and iterators. 

EEGLib includes several common EEG feature extraction 

procedures, including wavelets, power spectrum density (PSD), 

Event Related Synchronization (ERS) and other statistical 

measures. In the work described, we are using the mean PSD in 

Delta (δ) – 1 to 4 Hz, Theta (θ) – 4 to 8 Hz, Alpha (α) – 8 to 

13Hz, Beta1 (β1) – 13 to 17Hz, and Gamma (γ) – 51 to 99 Hz – 

rhythms in all 16 electrodes. The analysis thus considers feature 

vectors composed by 16x5 real values. Mean PSD is determined 

in 1000ms frames with an overlapping of 500ms. 

Our framework also has tools that support various standard 

learning methods, including neural networks, K-Nearest 

Neighbors (KNN), Ada Boost and Support Vector Machines. We 

have tested all of these tools, but for simplicity, current reading 

processing procedures are using the KNN provided in SPRTOOL 

MATLAB Toolbox.  

 

5. RESULTS AND DISCUSSION 
This section presents and discusses the results of the relevance 

ordering of input signals and bands.  

5.1 EEG Signals Relevance Ordering 
The relevance measurements ranks of all bands were averaged for 

each electrode. Figure 5 below presents the average values 

determined in all samples sets. The y-axis represents the 

importance rank average of all features of each electrode. For 

instance, the average of all features relative to O1 electrode has an 

average rank of 60 in 80. 

 

  

Figure 5. Average input signal relevance (ranks). 

 

Figure 6 shows the locations of the most ranked electrodes. The 

electrodes that are not signaled have a rank inferior to 27. 

 

 

 

Figure 6. Average input signal relevance (locations).  

 

It is clear that the main differences are dominant in the left 

hemisphere. This is in agreement with the study about reading 

tasks conducted by Bizas et al [2]. Their findings suggested that 

changes in PSD between reading tasks are restricted to left 

hemisphere. This hemisphere specialization is also confirmed by 

functional neurosciences experiments. It seems that about 90% of 

adult population has left-hemisphere dominance for language 

[13]. Broca’s and Wernicke’s regions, which are respectively 

responsible for speech and language understanding, are located in 

left hemisphere [13]. Wernicke’s area influence is clear in our 

study: there is a visible importance elevation near electrodes T5, 

P3 and O1. We also expected a more visible influence of Broca’s 

area in our results, near F7, C3 and T3, but this was inconclusive. 

The highest ranked electrodes are in the frontal polar and occipital 

electrodes. Occipital lobe is where visual processing occurs [13], 

which supports our results regarding reading versus non-reading 

cognitive tasks. Frontal lobe is responsible for higher level 

processes, but we believe that it is more likely that the differences 

are due to eye artifacts. 

5.2 Bands Relevance Ordering 
The relevance measurement ranks of all electrodes were averaged 

for each band. Figure 5 shows the average results determined in 

all samples. The y-axis indicates the importance rank average of 

all features of each band. For instance, the average of all features 

relative to α band has an average rank of 50 in 80.  

 

 

Figure 7. Average band relevance. 

 

γ and δ bands are visibly less ranked that θ, α , and β1. We were 

expecting, due to previous related work, more relevant differences 

between these two groups of bands. γ rhythm is considered an 

important marker for attention [6]. It appears that visual 

presentation of attended words induces a γ rhythm in the major 

brain regions associated with reading and that this effect is 
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significantly attenuated for unattended words. A possible 

justification for poor γ band performance in our work can be that 

our experiments are focusing on reading instead of stressing 

attention. These results show the difference between visual 

reading and attention in the cortex activity. 

Left hemisphere’s δ, θ, and β1 rhythms were already used for 

differentiating reading tasks [13]. Significant differences in these 

rhythms between semantic tasks, the ultimate attentive reading 

activity, and visual, orthographic, and phonological tasks have 

been reported. The differentiation of θ rhythm was confirmed in 

our study, but this did not hold for δ and β1 bands. This cannot be 

due to the averaging effect, since these results are consistent with 

the non-averaged values (see next section). 

The α rhythm, related with resting condition, demonstrated a good 

performance in our study, in spite of not being referenced in 

related work as the other bands are. Probably our non-reading task 

is behaving like a mental resting activity, when compared to 

reading task, thus causing the differentiation between the α bands 

of the sample sets of both classes.  

5.3 Total Features Ordering 
The importance measurement values were averaged for each of 

16x5 features. Table 2 below displays the 10 highest average 

results, determined in all samples sets for each feature.  

 

Rank 
Average 

Relevance Rank 
Electrode Band 

1 79,4 O1 Alpha 

2 77,8 P3 Alpha 

3 74,9 O1 Beta1 

4 74,8 P3 Theta 

5 73,9 O2 Alpha 

6 73,5 O1 Theta 

7 72,4 T5 Alpha 

8 69,0 O2 Beta1 

9 68,1 O2 Theta 

10 66,3 T5 Theta 

     

Table 2. 10 highest average feature relevance. 

This ranking reinforces all the previous discussion, because all 

these values are located in the left hemisphere, and α and θ are the 

most frequent bands. It also shows that the averaging introduced 

in the previous analyses may minimize the importance of certain 

electrodes, namely P3 that appears twice in the top 10. 

5.4 ANOVA Analysis Results 
We performed several ANOVA test runs with different groups of 

measures, namely: left versus right hemisphere, skull areas, bands, 

electrodes, and features.  

Erro! A origem da referência não foi encontrada. above 

(section 3) presented the ANOVA graphic and table for left and 

right hemispheres. These calculations were performed after 

averaging the ranks of all features related with each hemisphere. 

As we stated before, the results in the table indicate that the 

statistical parameters of the analyzed groups are consistent. This 

conclusion is reinforced by the graphic, which shows that the 

average ranks of both groups are statistically distinct with no 

possible overlap. We can also see that the left hemisphere 

importance is significantly higher than that of the right 

hemisphere.  

The next figure shows the ANOVA result taking the  the five 

tested bands as groups: δ, θ, α, β1, and γ (this order). These 

calculations were also performed after averaging the ranks in all 

features related with each band.  

 

SV SS DF MS F P Crit.F  

Between Groups 4158,5 4 1039,6 9,2 3,372E-05 2,6 

Within Groups 3944,6 35 112,7    

Total  8103,1 15 

            

Figure 8. ANOVA for δ(1), θ(2), α(3), β1(4) and γ(5) bands. 

The average ranks of θ and α were relatively higher and 

differentiated from the rest of the bands. Γ band performed 

poorly, showing the lowest rank and widest variation. According 

with the previous reasoning about ANOVA table results, we can 

also state that the statistical parameters of these groups are 

consistent, in spite of the F being close of its critical value.  

To further detail this analysis we performed Multiple 

Comparisons: a technique that complements ANOVA and looks 

for specific significant differences between pairs of groups by 

checking the means among them. Figure 9 contains multiple 

comparison results for delta, theta, alpha, and beta1. Each line 

segment represents the comparison intervals of each group.  

 

Figure 9. Multiple Comparison for δ(1), θ(2),  α(3) and β1 (4). 

 

δ and β1 bands comparison intervals were significantly different 

from the ones determined for θ and α rhythms. This also means 

that θ and α bands were significantly higher and distinct from the 

rest of the rhythms and, for this reason, they appear to be more 

relevant for classifying reading versus non reading tasks. 



Figure 10 below displays the ANOVA result for specific skull 

areas: front polar, frontal, central, temporal, occipital, and parietal 

regions. These calculations were performed after averaging the 

ranks of all features related with each area. 

 

SV SS DF MS F P Crit.F  

Between Groups 4893,1 5 978,6 50,9 9,5E-17 2,4 

Within Groups 807,4 42 19,2    

Total  5700,5 47     

       Figure 10. ANOVA for Frontal Polar (1), frontal(2), 

central(3), temporal(4), occipital(5) and parietal(6) areas. 

These groups’ statistical parameters are also consistent, as the 

previous tables, since F is significantly higher than its critical 

value, and P is extremely small. Accordingly, with our previous 

results, we obtained average ranks relatively higher and distant 

from the remaining regions for the front polar and occipital areas.  

We then repeated the ANOVA process for all input signals using 

the average ranks in all features related with each electrode (see 

Figure 11). We did not discard any input signal at this stage in 

order to verify the averaging effect that we could get in the 

previous calculations. These results confirmed the previous 

discussion about areas. Front polar and occipital electrodes 

revealed higher ranks than the remaining electrodes, in spite of 

not being distant enough, especially front polar. 

The values in the table also confirm these rankings as statistically 

consistent. F is once more greater that its critical value and P is 

very small. We then applied multiple comparisons to better 

analyze differences among electrodes (see Figure 12), and 

approximately got three groups, occipital, front polar and the 

remaining electrodes. Only for occipital electrodes, the 

comparison interval was significantly different from remaining 

electrodes group.  

Finally, we applied ANOVA to individual features, but reducing 

its number to 16 by applying the previous conclusions (see Figure 

13). Features were restricted to front-polar and occipital areas, and 

we also discarded the γ band. 

The table supports that these rankings are statistically consistent, 

but we got here the lowest F value. However, F still is greater than 

its critical value and the probability of F being smaller than its 

critical value is very small (P).  

δ band features from both occipital electrodes (9 and 13) worked 

poorly and showed a great variability. But the remaining features 

of these input signals were very concentrated and showed a 

relative distance regarding the rest of the groups. The variation of 

front polar related features (from 1 to 8) was more significant, 

especially for δ and β1 bands.  

 

SV SS DF MS F P Crit.F  

Between Groups 15849,8 15 1056,7 31,1 5,9E-33 1,8 

Within Groups 3810,4 112 34,0    

Total  19660,2 127     

       Figure 11. ANOVA for FP1(1), FP2(2), F7(3), F3(4), F4(5), 

F8(6), T3(7), C3(8), C4(9), T4(10), T5(11), P3(12), P4(13), 

T6(14), O1(15) and O2(16). 

 

Figure 12. Multiple Comparison for FP1(1), FP2(2), F7(3),

  F3(4), F4(5), F8(6), T3(7), C3(8), C4(9), T4(10), 

 T5(11), P3(12), P4(13), T6(14), O1(15) and O2(16). 

 

SV SS DF MS F P Crit.F  

Between Groups 17535,6 15 1169,0 6,7 4,59E-10 1,8 

Within Groups 19584,3 112 174,9    

Total  37119,9 127     

       Figure 13. ANOVA for FP1(1 to 4), FP2 (5 to 8), O1(9 to 12) 

and O2(13 to 16) with bands δ, θ, α and β1 respectively. 



 

Figure 14. Multiple Comparison FP1(1 to 4), FP2 (5 to 8), 

O1(9 to 12) and O2(13 to 16) with bands δ, θ, α and β1 

respectively. 

Multiple comparisons (see Figure 14) revealed approximately 

three groups of comparison intervals: (I) 10 to 12 and 15, with 

higher ranks and significantly different from the next group; (II) 

1, 4, 5,8,9 and 13, with lower ranks and significantly different 

from the previous group, and (III) Remaining features. Table 3 

shows more detailed data about the first two groups. 

 

Group 

Average 

Relevance 

Rank 

Electrode Band 

1 

10 O1 Theta θ 

11 O1 Alpha α 

12 O1 Beta1 β1 

15 O2 Alpha α 

2 

1 FP1 Delta δ 

4 FP1 Beta1 β1 

5 FP2 Delta δ 

8 FP2 Beta1 β1 

9 O1 Delta δ 

13 O2 Delta δ 

 

Table 3. Details of the two significantly different intervals. 

 

Almost all O1 electrode comparison intervals were situated in the 

higher ranked group, revealing that this electrode appears to be 

consistently different between both reading and non-reading 

classes, since most of its bands were affected. δ band intervals 

were also consistently located in the lower ranked group, showing 

that it seems to be less relevant than the remaining rhythms.  

 

6. CONCLUSIONS AND FUTURE WORK  
This paper presented a study about the discrimination between the 

relevance of different types of EEG input signals with respect to 

their ability to identify silent attentive visual reading versus non 

reading cognitive tasks. 

We have demonstrated that EEG input signals are not equally 

significant, and that we can quantify their contributions for the 

distinction between reading and non reading cognitive tasks. More 

than that, we outlined a systematic and quantitative method for 

relevance determination that can be applied to other cognitive 

tasks. 

We presented results that reinforce that left hemisphere is 

dominant regarding reading tasks. We showed that its input 

signals consistently revealed higher dissimilarities between 

reading and non-reading samples than its homologues in right 

hemisphere. The results also indicated front polar and occipital 

areas, especially the latter, as also α and θ bands, related features 

as being more relevant that the remaining values. In opposition 

the some related work [12],[13], γ and δ bands results consistently 

performed poorly. In summary, we can state that: 

For EEG-based silent reading detection, use mainly  O1(θ,α,β1) 

and O2(α) 

 

With this method, we can now proceed to the design of focused 

applications that exploit this significantly reduced set of human 

physiological features. The above specific conclusions are a first 

step towards the exploitation of this reduced set of signals in 

interactive applications targeted at assisted reading (such as 

ReadingScroller, briefly mentioned above). Having a reduced and 

optimized (for the cognitive task at hand) set of signals is a critical 

requirement for the optimization of the real time processing and 

for the use of the future light and portable EEG devices, where 

results are being reported that justify our expectations [11]. 

Our work elicits the following additional requirements and ideas 

that should be explored in sequence.  

Calibration Procedures Design 
Although our results were consistent with neurosciences 

knowledge and some of the existing related work, the presented 

analysis was performed with a single subject and a limited set of 

samples. This was a conscious choice in this stage to minimize the 

set of variables and tune the method. The repetition of the 

procedure with a larger number of subjects will now evaluate the 

degree of generalization of these results2. 

Our experience indicates that user differences will introduce some 

degree of diversity, such as skin conductance or hair type. In any 

case, differences are to be expected even when the subject is the 

same, due to biorhythmic cycle, sleepiness, or environmental 

conditions.  

We aim to compensate these differences by designing adequate 

calibration procedures that adapt to the individual user profiles 

and conditions.  

Dimensionality Reduction 
As we said before, the ordering of EEG signals relevance, with 

respect to their ability to distinguish reading and non reading 

mental activities, is indispensable for the use of the future light 

and portable EEG devices. Signal ranking will allow the reduction 

of the number of sensors and turn the way users interact with 

augment reading applications more simple and natural. 

In this context, we aim to include this knowledge in the current 

signal processing chain. A serious analysis about the impact of 

removing some of the less relevant features must be done. 

Reducing feature vector dimensionality will ultimately reduce 

processing time and allow the development of more effective real 

time applications. 

                                                                 
2 We referred above that around 90% of the population shows left 

hemisphere dominance for language [13]. 



Opportunities for Gamma Band Analysis 
As we told before, γ rhythm is considered an important marker for 

attention [13]. However, it performed poorly in our study. 

Possible reasons for these results, in relation to the ones suggested 

in relative work, are the use of different type of features (PSD 

instead of wavelets) or distinct cognitive goals (reading versus 

non-reading instead of attentive versus non-attentive reading). A 

better understanding of this effect may be achieved through the 

use of wavelet coefficients for analyzing the γ band patterns in our 

experiments. 

 

7. ACKNOWLEDGMENTS 
This work was partially supported by Fundação para a Ciência e 

Tecnologia (FCT), Portugal, Grant SFRH/BD/30681/2006 and 

Ciência 2007 Program. 

 

8. REFERENCES 

[1] Aarts, E., Encarnação, J., True Visions, The Emergence of 

Ambient Intelligence, Springer, 2006. 

[2] Bizas, E., Simos, G., Stam, C.J., Arvanitis, S., Terzakis, D., 

Micheloyannis, S. EEG Correlates of Cerebral Engagement 

in Reading Tasks, Brain Topography, Vol. 12, 1999. 

[3] Oliveira, I., Lopes, R., Guimarães, N. M., Development of a 

Biosignals Framework for Usability Analysis (Short Paper), 

ACM SAC´09 HCI Track, 2009. 

[4] Wolpaw, J. R. et al., “Brain–Computer Interface Technology: 

A Review of the First International Meeting”, IEEE 

Transactions on Rehabilitation Engineering, Vol. 8, 2000. 

[5] Millán, J.R., “Adaptative Brain Interfaces”, Communications 

of the ACM, 2003. 

[6] Jung, J., Mainy,N., Kahane,P., Minotti, L., Hoffmann, D., 

Bertrand, O., Lachaux, J., ” The Neural Bases of Attentive 

Reading”, Human Brain Mapping, Vol.  29,  Issue 10, pp. 

1193 – 1206, 2008. 

[7] Krumm, J. (ed) (2010) Ubiquitous Computing Fundamentals, 

CRC Press, 2010 

[8] Malerba, D. Esposito, F., Monopoli, M. , Comparing 

dissimilarity measures for probabilistic symbolic objects, 

Data Mining III, Series Management Information Systems, 

WIT Press, Vol. 6, pp. 31-40, 2002.   

[9] Oliveira, I., Grigore, O. and Guimarães, N.,  Reading 

detection based on electroencephalogram processing, 

Proceedings of the WSEAS 13th international conference on 

Computers, Rhodes, Greece, 2009. 

[10] Pekalska, E.,  Duin, R., “The Dissimilarity Representation 

for Pattern Recognition: Foundations And Applications”, 

Machine Perception and Artificial Intelligence, World 

Scientific Publishing Company, Ch. 5, pp 215-254, 2005. 

[11] Popescu, F. Siamac, F., Badower, Y., Blankertz, B., Mu ller, 

K.,   “Single Trial Classification of Motor Imagination Using 

6 Dry EEG Electrodes”. PLoS , ONE 2(7): e637, 2007. 

[12] Shlens, J., “Notes on Kullback-Leibler Divergence and 

Likelihood Theory”, Systems Neurobiology Laboratory, Salk 

Institute for Biological Studies, La Jolla, CA 92037, 2007. 

[13] Steinberg, R. J., Cognitive Psychology, Thomson 

Wandsworth, 2003. 

[14] Streitz, N., Kameas, A., Mavromatti, I.,  The Disappearing 

Computer: Interaction Design, System Infrastructures and 

Applications for Smart Environments, Springer, 2007 

[15] Topsøe , F., Jensen-Shannon Divergence and norm-based 

measures of Discrimination and Variation,  Technical report, 

Department of Mathematics, University of Copenhagen, 

2003. 

[16] Z.A. Keirn, J. I. Aunon,  “A New Mode of Communication 

between Man and His Surroundings”, IEEE Transactions on 

Biomedical Engineering, Vol. 37, 1990. 

 


